RS/tRNA Foundational Publication Support
Pirman, Natasha L., Karl W. Barber, Hans R. Aerni, Natalie J. Ma, Adrian D. Haimovich, Svetlana Rogulina, Farren J. Isaacs, and Jesse Rinehart. (sep) 2015. “A Flexible Codon In Genomically Recoded Escherichia Coli Permits Programmable Protein Phosphorylation”. Nature Communications 6: 8130. doi:10.1038/ncomms9130.
Lee, Sangsik, Seunghee Oh, Aerin Yang, Jihyo Kim, Dieter Söll, Daeyoup Lee, and Hee-Sung Park. 2013. “A Facile Strategy For Selective Incorporation Of Phosphoserine Into Histones”. Angewandte Chemie International Edition 52: 5771-5775. doi:10.1002/anie.201300531.
RS/tRNA Usage Publications
Perez-Pepe, Marcelo, Anthony W. Desotell, Hengyi Li, Wenxue Li, Bing Han, Qishan Lin, Daryl E. Klein, Yansheng Liu, Hani Goodarzi, and Claudio R. Alarcón. (may) 2023. “7Sk Methylation By Mettl3 Promotes Transcriptional Activity”. Science Advances 9: eade7500. doi:10.1126/sciadv.ade7500.
Di Mattia, Thomas, Arthur Martinet, Souade Ikhlef, Alastair G. McEwen, Yves Nominé, Corinne Wendling, Pierre Poussin-Courmontagne, et al. (dec) 2020. “Ffat Motif Phosphorylation Controls Formation And Lipid Transfer Function Of Inter-Organelle Contacts”. The Embo Journal 39: e104369. doi:10.15252/embj.2019104369.
Palani, Saravanan, Darius Koester, and Mohan K. Balasubramanian. 2020. “Phosphoregulation Of Tropomyosin-Actin Interaction Revealed Using A Genetic Code Expansion Strategy”. Wellcome Open Research 5: 161. doi:10.12688/wellcomeopenres.16082.1.
Baliova, Martina, and Frantisek Jursky. (aug) 2020. “Phosphorylation Of Serine 157 Protects The Rat Glycine Transporter Glyt2 From Calpain Cleavage”. Journal Of Molecular Neuroscience: Mn 70: 1216-1224. doi:10.1007/s12031-020-01529-4.
Mohler, Kyle, and Jesse Rinehart. 2019. “Expression Of Authentic Post-Translationally Modified Proteins In Organisms With Expanded Genetic Codes”. Methods In Enzymology 626: 539-559. doi:10.1016/bs.mie.2019.07.017.
Niemi, Natalie M., Gary M. Wilson, Katherine A. Overmyer, F.-Nora Vögtle, Lisa Myketin, Danielle C. Lohman, Kathryn L. Schueler, et al. (jul) 2019. “Pptc7 Is An Essential Phosphatase For Promoting Mammalian Mitochondrial Metabolism And Biogenesis”. Nature Communications 10: 3197. doi:10.1038/s41467-019-11047-6.
Zheng, Huayu, Jingxuan He, Jinghui Li, Jing Yang, Martin L. Kirk, Linda J. Roman, and Changjian Feng. (feb) 2019. “Generation And Characterization Of Functional Phosphoserine-Incorporated Neuronal Nitric Oxide Synthase Holoenzyme”. Journal Of Biological Inorganic Chemistry: Jbic: A Publication Of The Society Of Biological Inorganic Chemistry 24: 1-9. doi:10.1007/s00775-018-1621-1.
RS/tRNA Pair Development Year
2015
ncAA(s) Incorporated
phosphoserine
ncAA Structure (png, jpg, jpeg)
ncAA Utility
Used to produce site-specifically phosphorylated proteins at a serine residue via genetic code expansion versus other protein phosphorylation strategies.
RS Organism of Origin
Parent RS
RS Mutations
E421S
E414I
P495R
I496R
K347E
N352D
L521I
E414I
P495R
I496R
K347E
N352D
L521I
tRNA Organism of Origin
Parent tRNA
tRNA Anticodon
CUA
Other tRNA Mutations
C20U
G37A
G37A
Multiple tRNAs?
Parent tRNA ( SeptRNA) Mutations: (C20U, C35U, G34C)
RS/tRNA Availability
Is available through AddGene #68292
Used in what cell line?
RS/tRNA Additional Notes
This system also contains a mutated EF-TU (EF-Sep21), this contains the following mutations ( H67R, E216V,D217G,F219Y,T229S,N274W). This system together has been shown to possess a 9-fold higher protein yield compared to the previous SepOTSα (SepRS, tRNA-Sep, EF-Sep) while only containing 4 copies of tRNA-SepA37 compared to SepOTSα's 5 copies. in C321.ΔA with GFP. Furthermore, it is incorporation purity for Sep was shown to be between 80% and 90%. However, most of the test SepOTS systems showed improved protein yield in the C321.ΔA cell line compared to EcAR7.ΔA.